
PacketCrypt

Caleb James DeLisle (​cjd@cjdns.fr​)
Vishnu Seesahai (​vjs1@cornell.edu​, ​vishnu@gridfinity.com​)

Abstract
Since proof of work was popularized by the Bitcoin project, there has been active research into ways to make Proof
of Work (PoW) useful. Unfortunately it has proven remarkably difficult to make PoW serve humans without allowing
miners to influence the nature of the work problem to their own advantage, destroying the fairness of the algorithm.

PacketCrypt takes a different approach, while the work done by PacketCrypt itself is not useful, PacketCrypt
attempts to make the PoW very similar to useful work so that research and development into technologies for
efficiently mining PacketCrypt will be reusable for other purposes.

PacketCrypt encourages the development of technologies for high speed encryption of internet traffic, it also
contains a component using randomly generated code in order to encourage CPU mining and research on highly
parallel CPUs. Most importantly, PacketCrypt is parallelizable with n-to-n communication, making it a bandwidth
hard proof of work.

1. PacketCrypt Protocol Overview
The PacketCrypt protocol consists of two distinct
stages, in the first stage (“announcement mining”),
the miner executes a CPU-hard algorithm which
creates 1KB proof (called an ​announcement​), then in
the second stage (“block mining”) the miner
pre-commits a merkle root of collected
announcements and then executes a memory-hard
proof of work algorithm which accesses random
announcements from that set. Upon finding a
“winning hash”, the miner presents the
announcements which were accessed in that cycle as
well as merkle branches linking them to the
pre-commitment, and statistically proving that they
had as many announcements as they claimed to have.
This presentation is referred to as the
PacketCryptProof and is needed to prove that the
work was done.

The amount of work which the block miner needs to
perform is reduced based on the amount of
announcement work in the pre-committed set of
announcements. But effective announcement work
decays as time goes on so block miners require a

steady supply of fresh announcements, thus creating
the demand for bandwidth.

2. PacketCrypt Algorithm
PacketCrypt is an algorithm which takes input data
(for example of a block header) and a list of data
items (in the block mining stage, the data items are
the announcements) where the merkle root of that list
has been committed in the input data. It accesses 4
items from the list (determinant random based on the
items and input data) and then outputs a hash of the
input data and the 4 items. It also outputs a proof
containing the 4 data items from the list and a partial
merkle tree allowing the verifier to prove that those
items existed at the given positions in that list.

Verification of the resulting proof consists of using
the partial merkle tree to build a sparse list with only
those 4 data items and then repeating the process of
hashing. If the PacketCrypt algorithm requires a data
item which is not present, the verification fails. On
success it results in the same hash which was
produced by the original mining algorithm.

mailto:cjd@cjdns.fr
mailto:vjs1@cornell.edu
mailto:vishnu@gridfinity.com

When searching for a partial preimage, as is done in
cryptocurrency mining, the PacketCrypt algorithm
must be run millions of times over, each time it is
run, it must access data items from the list, making
the result an effective proof that the data set was
present in the miner’s memory at the time that they
were mining.

A. What is a time memory tradeoff ?
A time memory tradeoff (TMTO) describes the
“price” in CPU processing time of reducing memory
consumed in computing the solution to a particular
problem. While TMTOs can take a number of
different forms, we will concentrate on two in
particular.

An obvious attack against the block mining stage of
the PacketCrypt protocol is to throw away
announcements or lie about the number of
announcements which you have. Suppose you wanted
to pretend you had twice as many announcements as
you really had: Every time you perform a hash
operation which seeks an announcement that is
missing, you simply try again. This is what we will
call a ​probabilistic TMTO​, because it is based on
faking data in the hopes that it will not be needed.

PacketCrypt requires 4 dependent memory accesses
so the chance that you can mine with half of the data
missing is 1 in 16. The choice of the number 4 is
intended to avoid excessively bloating the size of the
PacketCryptProof while still significantly penalizing
the exercise of the TMTO. It’s tempting to think that
needing to make 16 hash operations means one needs
to perform 16x the CPU effort, but because
PacketCrypt performs the memory lookups
sequentially, one is able to bail out part way through
the hash operation. As a hash operation consists of 5
steps with 4 memory lookups in between, the steps
which must be performed to test 16 possibilities with
50% of the memory missing are:
8*1 (fail in the first cycle) +

4*2 (fail in the second cycle) +

2*3 (fail in the third cycle) +

1*4 (fail in the forth cycle) +

1*5 (success)

This is a total of 31 encryption attempts, which
compared to 1*5, the case where all memory is
available, requires 6.2x the CPU usage.

There is also another type of TMTO which we’ll call
a ​regenerative TMTO because it is based on
regenerating the data which was discarded. Scrypt,
one of the earliest works on memory hard functions,
has a ​regenerative TMTO which requires only 17%
increase in processor time to halve the memory. This
issue has since been formalized and is the main 1

reason why ASIC Litecoin miners are able to
dominate.

While the properties of the ​probabilistic TMTO are
clearly understood for PacketCrypt, the ​regenerative
TMTO is, for PacketCrypt, dependent on the
difficulty of generating the data items themselves.
Therefore, as long as it takes CPU power to create a
data item, we can form a unified definition of
time/memory effort used for PacketCrypt. If we
conjecture that we have identified all of the
degenerate cases, we can informally prove that there
exists no method of mining PacketCrypt hashes
which is more advantageous than the best one which
we identify.

B. Hash Algorithms Used
The PacketCrypt algorithm uses chacha20/poly1305
encryption algorithm to encrypt a 2048 byte buffer
multiple times over, while copying each data item
over the first 1024 bytes of that buffer in each cycle.
At the end of each cycle, the poly1305 authenticator
and part of the encrypted data as the key for the next
encryption cycle as well as for the index of the next
data item to access. While this choice of algorithm is
clearly unorthodox, the objective is to encourage the
development of technology which works for
encrypting and sending messages of about the same
size as an internet packet.

C. PacketCrypt as a Broadcast Network
PacketCrypt can be used to form a gossip-based
broadcast network, where anyone can broadcast a
message as long as it contains a minimum amount of
proof-of-work. In fact, any type of announcement can

1 ​https://eprint.iacr.org/2015/430.pdf

https://eprint.iacr.org/2015/430.pdf

be sent on this broadcast network. An announcement
is created by a participant in the network who wants
to get their message heard by a large number of other
participants. Miners collect announcements into what
we will call an AnnouncementSet which is then used
for memory hard mining. By collecting
announcements from network participants, a miner is
able to get a discount on the proof of work which
they must perform, effectively outsourcing some of
the mining effort to those making announcements.

Parties who want to broadcast a message across the
network will be able to do so by crafting an
announcement and mining it themselves before
releasing it with some work done on it. The layout of
an announcement message is as follows:

Version uint8 Version number, currently 2

SoftNonce [3]byte Nonce used for mining, can be changed without regenerating the mining
dataset.

HardNonce [4]byte Nonce used for mining, any change requires regenerating the mining
dataset.

WorkBits uint32 Bitcoin format compact representation of the max hash for this
announcement

ParentBlockHeight uint32 Number of the most recent block at the time this announcement was made

UserDefined [40]byte Data which can be decided by the announcement miner

SigningKey [32]byte If this is non-zero, the announcement must be signed with this ed25519 key
when it is included in a block.

MerkleBranch [14][64]byte A branch proving one of the elements in the announcement dataset.

LastItemPrefix [40]byte First 40 bytes of the last item in the dataset.

Table 1: This table shows the layout of an announcement. The colors show the point in the announcement hashcash mining cycle
when the parts of the announcement are committed. MerkleBranch and LastItemPrefix are not committed at all and are only
attached to the announcement as proof, SoftNonce is used in the hashing process but is not committed when building the dataset,
the rest of the elements are committed (along with the hash of the block at ParentBlockHeight) when constructing the dataset.

a. Announcement Hashcash
The instance of PacketCrypt used for hashing the
individual announcements is somewhat special. First
a hash ​h0 is created by hashing the announcement
along with the block header hash of the most recent
block, when performing this hash, the SoftNonce, is
zeroed and HashBranch and LastItemPrefix are
omitted. Then ​h0 is expanded into an array of 2​13
1KiB items (8MB) by generating a RandomHash
program (explained further below) and executing it
2​13 times. Third, a Merkle tree is built from that array
of items using 512 bit blake2b and the announcement

is hashed again with the Merkle root (again with
SoftNonce zeroed and MerkleBranch and
LastItemPrefix omitted). Fourth, the announcement
mining begins, with SoftNonce advanced to try each
new hash. When a hash is found which meets the
requirement in WorkBits, the Merkle branch of the
forth data item is placed in MerkleBranch and the
first 40 bytes of this item are used to pad out the end
of the announcement, filling LastItemPrefix.

Verification is similar but with less memory needed,
the announcement is hashed as before but instead of
creating an array of 2​13 items up-front, the items are

created as needed during the PacketCrypt cycle.
When the 4th item is reached, its hash and index is
validated against the HashBranch entry and the result
of the PacketCrypt cycle is compared to WorkBits.

i) GPU and ASIC frustration
While the PacketCrypt block mining algorithm is
largely intended to work on any hardware which can
encrypt and move data quickly, the announcement
hashcash is designed to prefer the unused CPU cycles
of existing hardware which is geographically
distributed. While we acknowledge that
CPU-preferring algorithms carry a higher risk of
ASIC implementation, we prefer CPU for the
announcement hashcash because bandwidth is only
interesting if it actually goes somewhere and it would
be largely self-defeating if announcement miners and
block miners all placed their equipment in
datacenters, or worse, colocated it in the same
datacenter to eliminate transit costs.

For the announcement mining, the addition of the
RandomHash is intended to maximally frustrate
GPUs and ASIC implementations. RandomHash
constructs a random “program” made of a set of
instructions that do a sequence of math, logic and
branching operations. This favors the flexibility of
general purpose processors over GPUs or ASICs.

ii) Announcement batch limits
If an announcement miner is allowed to create too
many announcements with the same dataset, the
announcement miner is able to avoid expanding
bandwidth sending them all to the block miner
because instead they can simply send the entire
dataset plus a compressed representation of the
winning SoftNonces.

To prevent this, we limit the number of winning
announcements to around 512 per batch. The reason
for the choice of 512 is because the merkle tree of all
2​13 items in the dataset is 1MB which is twice that of
512 announcements, providing a reasonably
comfortable margin given the recipient needs merkle
branches and also a 40 byte prefix of one of the
actual data items to reconstruct the announcements.

The way the batch limit is applied is by constraining
the range of SoftNonce, but since the difficulty of
winning an announcement is variable, the range of
SoftNonce must also be variable. The range of
SoftNonce is 0-1024 if the hash target is at the
minimum (every second hash is a winner), but for
every halving of the hash target, the maximum
SoftNonce doubles, keeping the expected number of
valid announcements stable at 512.

b. Announcement rules
In order to be valid, an announcement needs to
contain two commitments:

1. The hash of the most recent block at the
time the announcement was created

2. The amount of proof of work which the
announcer intends to perform (target hash),
this is specified in WorkBits.

An announcement will only be valid for inclusion in
a block at height ParentBlockHeight + 3. The choice
of 3 is to allow one block period for network
participants to mine an announcement, one block
period for them to broadcast it across the network,
and the third block period when miners stop
accepting new announcements because they’re
mining. After block number ParentBlockHeight + 3,
the value of the work done on an announcement
halves each block following, this is done to ensure
that block miners must continuously mine or
download fresh announcements. This decayed
valuation of announcements is referred to as ​effective
work​. After the amount of ​effective work decays
below the minimum allowable work, the
announcement is no longer usable in any capacity.

c. Compact proof
Since the AnnouncementSet can be many gigabytes
in size, it is unacceptable to include the entire set
with each block. Because the PacketCryptProof
provides a random sample of the AnnouncementSet,
we can verify any property which we expect all
announcements to have, with the same confidence as
our belief the miner is not using ​probabilistic TMTO​.
For example, if we insist that all announcements must
begin with the letter “A”, it does a miner no more
good to mine an Announcement set where one

announcement starts with a “B” than he does to omit
that announcement entirely.

We can therefore require announcements to contain a
minimum amount of CPU work by requiring the
block miner to specify the minimum work of any
announcement in his AnnouncementSet, in his
coinbase commitment. The verifier checking that the
4 announcements provided with the
PacketCryptProof will also verify that he adhered to
this commitment.

d. AnnouncementSet rules
For a miner’s block to be valid, all of the
announcements which they provide in their
PacketCryptProof must also be valid, furthermore the
Merkle tree of the announcements in the
PacketCryptProof must match a merkle root which is
committed in the coinbase. Also in the coinbase,
there must be a commitment of the minimum
announcement ​effective work (henceforth
min_ann_work​) and all announcements in the
PacketCryptProof must have at least this as their
minimum required hash work. Finally of course, the
work done by the block miner must be valid
according to the target as defined by the blockchain
consensus rules. However, the amount of work
expected of the block miner is based on the amount
of announcements that they have, so the computation
is not straight forward. This global difficulty is
defined as follows:

Work(hash) = (2**255 / hash + 1)

block_miner_work = Work(packet_crypt_hash)

min_ann_work = MIN(

for_each ann in ann_set:

Decay(ann.target_work)

)

global_work =

block_miner_work *

min_ann_work *

(ann_count ** 2)

work_is_valid =

global_work >=

Work(block_header.nBits) ** 3

In words:

● block_miner_work is the amount of
memory-hard work done by the block miner

● min_ann_work ​is the lowest amount of
effective work that is done for any of the
announcements in the AnnouncementSet

● global_work is the product of
block_miner_work times
ann_min_work times the ​ann_count
squared

And the work is valid if the global work is greater
than or equal to the cube of the difficulty as specified
in the block header. The announcement count is
squared because first it is multiplied by the
ann_min_work to compute the effective value of
announcement mining effort and then it is multiplied
again to add a secondary equal weight to bandwidth
usage.

3. Participant behavior modelling
We will now attempt to reason about the behavior of
participants in the network. We will start with the
incentives facing network participants and then finish
by discussing the miner’s incentives and the
incentives which affect both roles.

A. Announcement miner incentives
Looking at existing cryptocurrencies and the
emergent ecosystems around them, we can enumerate
a number of different activities which network
participants will want to engage in.

● Transfer of cryptocurrency
● Making and responding to OTC market

offers
● Communicating the quality of their network

links in order to be able to sell bandwidth
leases.

● Participating in mining (e.g. in a mining
pool)

● Broadcast novelty messages

The transfer of cryptocurrency is perhaps the most
simple case because it is fulfilled by the blockchain
and lightning network operating in their normal
capacity. All other objectives can be achieved
through the use of announcements.

a. Types of announcements
There is no technical limitation against an
announcement containing any type of data, but we
can will attempt to predict the general types of
announcements which will be in common use. We
predict that announcements will take 4 general forms:

● Network state updates
● Market offers
● Novelty announcements
● Mined (empty) announcements

i) Network state updates
These are announcements which communicate
changes in the quality and amount of available
network bandwidth on a particular link. Participants
in the network may send them to maintain a good
reputation by maintaining clear communication with
those who have leased access to their bandwidth as
well as those who might lease access in the future.

ii) Market offers
While the Lightning Network provides a convenient
way for network participants to make OTC
exchanges, there remains a need for discoverability of
available offers. The announcement system provides
a fully decentralized way for market offers to be
exchanged without any kind of “exchange” to
coordinate them. The most obvious type of offer
which will be exchanged is the offer of a network
bandwidth lease but we foresee the emergence of
many different types of assets being exchanged in
emergent OTC markets.

iii) Novelty announcements
From the history of arbitrary data in the Bitcoin
blockchain to applications like Cryptokitties, it
should be clear by now that anything which ​can be
used to broadcast arbitrary messages to the world,
will be. Participants who send novelty data act for
their own amusement and thus do not act in ways
considered economically rational. At times they are
prepared to spend many times what a rational actor
would spend for the same service for its intended use.

Because announcements are not stored in the
blockchain, we consider novelty announcements
unlikely to have any negative consequence and

potentially to be positive, as they create incentive for
miners to use more bandwidth than they would have
otherwise. We can imagine such applications as chat
or microblogging to be built on top of novelty
announcements.

iv) Mined announcements
Mined announcements are announcements which are
created for the sole purpose of assisting miners in
winning a block. Unlike any other type of
announcement discussed, the announcer does ​not
want the announcement to be received by as many
network participants as possible, he rather wants it to
be received by a miner who will pay him for it.

A mined announcement will normally tend to have no
user defined data order to save bandwidth by
compression.

b. Announcement cost and demand
The amount of cost which a network participant is
willing to incur in order to send an announcement is
defined by what is effectively a market for bandwidth
on congested links. As long as there is no network
congestion, the cost to an announcer converges on the
minimum that is valid for an announcement to be
forwarded. When some links in the network begin to
become congested and nodes begin to prioritize
which announcements they forward, the cost to the
announcer grows to the market rate for reaching the
subset of nodes who are behind congested links.
Because participants have different priorities, we
expect announcements to bear a wide range of
different amounts of work.

B. Block miner incentives
With ​block_miner_work​, ​min_ann_work and
the square of ​ann_count all multiplied together, we
expect miners expend effort on whichever number
can be raised by a given percentage most cheaply.

The cost associated with ​min_ann_work rises
linearly with a rise in ​ann_count because each
announcement in the set of size ​ann_count must
bear at least ​min_ann_work​ proof of work.

The cost of increasing ​block_miner_work rises
with ​ann_count as well, but as a function of

memory bandwidth and capacity. For example, if the
size of the announcement set is less than half the size
of the memory used to store it, ​ann_count can be
doubled with a relatively low impact on the cost of
mining the announcement set. However, if the
announcement set is near to the limit of a cache or
memory size, the cost of expanding ​ann_count
even slightly could be more than an order of
magnitude.

A miner who is collecting announcements from the
network will be incentivised to choose from all
announcements which he knows of, subset for which
min_ann_work * ann_count ** 2 is the
greatest, henceforth known as the ​best subset​.

a. Mining announcements
When increasing ​min_ann_work * ann_count

** 2 is cheaper than increasing
block_miner_work​, a miner will tend to begin
mining the announcements or paying someone else to
do it. This will tend to happen when the value of the
block reward is more than double the work value of
the ​best subset​.

i. Changing the best subset
When the savings in memory and bandwidth cost
difference exceeds the value of the lowest value
announcements in the ​best subset​, miners are
incentivized to mine announcements with more than
the least possible work, in order to increase the
min_ann_work​ of the best subset.

4. Conclusion
Here we documented the PacketCrypt proof of work
algorithm which is designed to be bound by both
memory latency and network bandwidth between
participants. We reasoned about a number of
potential failure modes and we considered different
use cases of announcements and how users might
affect the network in different ways. The code for this
algorithm can be found at:
https://github.com/cjdelisle/PacketCrypt/ and is
currently implemented in the PKT cryptocurrency
(​https://pkt.cash​).

https://github.com/cjdelisle/PacketCrypt/
https://pkt.cash/

Message

MerkleHash

RandHash +
CryptoCycle

Ann Header

Item0

Item1

Item2

Item3

...

Item8191

Root

CryptoCycle

softNonce

CryptoCycle

CryptoCycle

CryptoCycle

8MiB Pre-Dataset

MerkleTree

CryptoCycle

2 KiB state

ResultHash

Announcement

GetMerkleProof

Legend
Input

Data

Computation

State

Data flow
2-way (table lookup)
Data flow only if
hash found

PacketCrypt2 Announcement Hash
Data flow

Item0

Item1

Item2

Item3

...

Item8191

8MiB Dataset
Lookup

Lookup

LookupLookup

Lookup

Encrypt

HardNonce LastBlkHash SigningKey

RandHash +
CryptoCycle

